|
The Miller–Urey experiment (or Miller experiment) was a chemical experiment that simulated the conditions thought at the time to be present on the early Earth, and tested the chemical origin of life under those conditions. The experiment tested Alexander Oparin's and J. B. S. Haldane's hypothesis that conditions on the primitive Earth favoured chemical reactions that synthesized more complex organic compounds from simpler inorganic precursors. Considered to be the classic experiment investigating abiogenesis, it was conducted in 1952 by Stanley Miller, under the supervision of Harold Urey, at the University of Chicago and later the University of California, San Diego and published the following year.〔 Miller states that he made "A more complete analysis of the products" in the 1953 experiment, listing additional results.〕 After Miller's death in 2007, scientists examining sealed vials preserved from the original experiments were able to show that there were actually well over 20 different amino acids produced in Miller's original experiments. That is considerably more than what Miller originally reported, and more than the 20 that naturally occur in life.〔 There is abundant evidence of major volcanic eruptions 4 billion years ago, which would have released carbon dioxide (CO2), nitrogen (N2), hydrogen sulfide (H2S), and sulfur dioxide (SO2) into the atmosphere. Experiments using these gases in addition to the ones in the original Miller experiment have produced more diverse molecules.〔 More-recent evidence suggests that Earth's original atmosphere might have had a different composition from the gas used in the Miller experiment. But prebiotic experiments continue to produce racemic mixtures of simple to complex compounds under varying conditions. == Experiment == The experiment used water (H2O), methane (CH4), ammonia (NH3), and hydrogen (H2). The chemicals were all sealed inside a sterile 5-liter glass flask connected to a 500 ml flask half-full of liquid water. The liquid water in the smaller flask was heated to induce evaporation, and the water vapour was allowed to enter the larger flask. Continuous electrical sparks were fired between the electrodes to simulate lightning in the water vapour and gaseous mixture, and then the simulated atmosphere was cooled again so that the water condensed and trickled into a U-shaped trap at the bottom of the apparatus. After a day, the solution collected at the trap had turned pink in colour.〔 〕 At the end of one week of continuous operation, the boiling flask was removed, and mercuric chloride was added to prevent microbial contamination. The reaction was stopped by adding barium hydroxide and sulfuric acid, and evaporated to remove impurities. Paper chromatography revealed the presence of glycine, α- and β-alanine. Miller could not ascertain aspartic acid and GABA, due to faint spots.〔 In a 1996 interview, Stanley Miller recollected his lifelong experiments following his original work and stated: "Just turning on the spark in a basic pre-biotic experiment will yield 11 out of 20 amino acids."〔(【引用サイトリンク】title=EXOBIOLOGY: An Interview with Stanley L. Miller )〕 As observed in all subsequent experiments, both left-handed (L) and right-handed (D) optical isomers were created in a racemic mixture. In biological systems, almost all of the compounds are non-racemic, or homochiral. The original experiment remains today under the care of Miller and Urey's former student Jeffrey Bada, a professor at UCSD, at the University of California, San Diego, Scripps Institution of Oceanography. The apparatus used to conduct the experiment is on display at the Denver Museum of Nature and Science. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Miller–Urey experiment」の詳細全文を読む スポンサード リンク
|